TEG6s for Obsgynaecritcare 2024

Adam Eslick

Staff Specialist Anaesthetist, Westmead Hospital

Breakthrough devices

TEG 5000

ROTEM DELTA

New technology: TEG 6s

- Cartridge based, nil reagent mixing, easy pipette (inexact volume)
- 4 analysis channels (simultaneous)
- Microfluidic cartridges
- Piezoelectric device causes the sample to vibrate
- Frequencies of the induced clot motion detected
- Fast fourier transform

New devices: cartridges

TEG 6s

Results – Multi Channel Devices

TEG

ROTEM

80 40 20 20 40 40 80 100	0 5 10	15 20	25 30 35	40 45 50 Time (mi	55 60 in)	65 70 7	5 80 85	90 95 100
	TEG-ACT (sec)	R (min)	K (min)	ANGLE (deg)		MA (mm)	LY30 (%)	FLEV (mg/dL)
СК		7.1	1.3	70.5		65.1		
• •••		4.6 - 9.1	0.8 - 2.1	63 - 78		52 - 69	0.0 - 2.6	
CRT	97.3	0.5	1.4	74.6		62.2	0.0	
	82 - 152	0.3 - 1.1	0.8 - 2.7	60 - 78		52 - 70	0.0 - 2.2	
CKH		7.9	1.3	72.3		64.5		
		4.3 - 8.3	0.8 - 1.9	64 - 77		52 - 69		001.1
CFF						20.9		381.4
						15 - 32		278 - 581

R-time: Time taken for clot formation to commence. Measured at 2mm amplitude.

Assesses clot initiation: Clotting factors, anticoagulants

80 60 40 Amplitude (mm) 20 0 20 40 60 80 100 20 10 15 25 70 90 95 100 55 75 85 Time (min) ANGLE (deg) LY30 (%) FLEV (mg/dL) TEG-ACT R (min) MA K (min) (mm) (sec) 7.1 13 65.1 70.5 CK ____ 4.6 - 9.1 0.8 - 2.1 63 - 78 52 - 69 0.0 - 2.6 97.3 0.5 74.6 0.0 14 62.2 CRT 82 - 152 60 - 78 52 - 70 0.0 - 2.2 0.3 - 1.1 0.8 - 2.7 7.9 1.3 72.3 64.5 СКН 4.3 - 8.3 64 - 77 0.8 - 1.9 52 - 69 CFF 20.9 381.4 15 - 32 278 - 581

R-time: Time taken for clot formation to commence. Measured at 2mm amplitude.

Assesses clot initiation: Clotting factors, anticoagulants

K-time: Taken taken to proceed from amplitude of 2mm to 20mm.

Assesses clot propagation. Interplay between clotting factors and fibrinogen. Inversely proportional to thrombin generation.

R-time: Time taken for clot formation to commence. Measured at 2mm amplitude.

Assesses clot initiation: Clotting factors, anticoagulants

K-time: Taken taken to proceed from amplitude of 2mm to 20mm.

Assesses clot propagation. Interplay between clotting factors and fibrinogen. Inversely proportional to thrombin generation.

Angle: Kinetics of clot formation. Fibrinogen and platelets contribute. Proportional to thrombin generation

R-time: Time taken for clot formation to commence. Measured at 2mm amplitude.

Assesses clot initiation: Clotting factors, anticoagulants

K-time: Taken taken to proceed from amplitude of 2mm to 20mm.

Assesses clot propagation. Interplay between clotting factors and fibrinogen. Inversely proportional to thrombin generation.

Angle: Kinetics of clot formation. Fibrinogen and platelets contribute. Proportional to thrombin generation

MA: Maximal mechanical clot strength. Dependent on fibrinogen, platelets and the absence of lysis

R-time: Time taken for clot formation to commence. Measured at 2mm amplitude.

Assesses clot initiation: Clotting factors, anticoagulants

K-time: Taken taken to proceed from amplitude of 2mm to 20mm.

Assesses clot propagation. Interplay between clotting factors and fibrinogen. Proportional to thrombin generation.

Angle: Kinetics of clot formation. Fibrinogen and platelets contribute. Proportional to thrombin generation

MA: Maximal mechanical clot strength. Dependent on fibrinogen, platelets and the absence of lysis

LY30: The percentage degradation of clot, 30 mins after MA has been reached. A definite endpoint of thrombolysis assessment.

R-time: Time taken for clot formation to commence. Measured at 2mm amplitude.

Assesses clot initiation: Clotting factors, anticoagulants

K-time: Taken taken to proceed from amplitude of 2mm to 20mm.

Assesses clot propagation. Interplay between clotting factors and fibrinogen. Proportional to thrombin generation.

Angle: Kinetics of clot formation. Fibrinogen and platelets contribute. Proportional to thrombin generation

MA: Maximal mechanical clot strength. Dependent on fibrinogen, platelets and the absence of lysis

LY30: The percentage degradation of clot, 30 mins after MA has been reached. A definite endpoint of thrombolysis assessment.

R-time: Time taken for clot formation to commence. Measured at 2mm amplitude.

Assesses clot initiation: Clotting factors, anticoagulants

K-time: Taken taken to proceed from amplitude of 2mm to 20mm.

Assesses clot propagation. Interplay between clotting factors and fibrinogen. Proportional to thrombin generation.

Angle: Kinetics of clot formation. Fibrinogen and platelets contribute. Proportional to thrombin generation

MA: Maximal mechanical clot strength. Dependent on fibrinogen, platelets and the absence of lysis

LY30: The percentage degradation of clot, 30 mins after MA has been reached. A definite endpoint of thrombolysis assessment.

CK and CKH:

Both contain Kaolin as an activator. Similar to aPTT, assessment of the intrinsic pathway. CKH includes heparinase Interpret these together. A prolonged R time which corrects with heparinase = heparin effect

R time may not be as reliable

R-time: Time taken for clot formation to

TEG 6s Console Results

Practical aspects of TEG 6s: Simple!!

- Global TEG = Use a Citrated Coags tube (blue top)
- Platelet Mapping TEG = Use a heparinised blood gas syringe
- Need < 1mL
- Wait > 10 minutes after protamine administration
- Needs to be run within 30 minutes
- Cartridges: stored in fridge but need to be used at room temperature
- The device heats sample to 37 degrees (beware the hypothermic pt)
- Pipette blood to the cartridge line

Interpretation – Stepwise summary

- 1. Assess the R-time on the CK channel.
 - 1.1 If Heparin effect possible, compare this to the CKH channel.
- 2. Assess the MA on the CRT or CK channel
- 3. Assess the MA on the CFF channel
 - 3.1 If MA low on CRT but normal on CFF, need platelets
 3.2 If MA low on CFF but normal on CRT, need fibrinogen
 3.3 If MA low on both channels, need fibrinogen +/- platelets
- 4. Look for evidence of thrombolysis on the CRT or CK channel

INTREPRETATION: TAKE HOME MESSAGES

- R-time on CK
- MA on CRT
- MA on CFF
- R-time on CKH if heparin present
- LY-30 on CRT

All the information you really need!!

INTERPRETATION: CAVEATS and PITFALLS

- TEG/ROTEM assess platelet "function"
 - Insensitive to thrombocytopenia > 50
- Look at the trace, not just the numbers
 - Bogus traces do occasionally occur
- Personal advice (not evidence based)
 - Caution with TEG/ROTEM results in the patient who is not bleeding
 - Caution with neuraxial techniques

TEG Platelet mapping

- Clopidogrel, Ticagrelor, Prasugrel frequently used
- Antagonise P2Y₁₂ receptor, preventing ADP-based platelet activation
- The effect of these drugs can be assessed using Platelet Mapping cartridge on the TEG 6s

TEG Platelet Mapping

- Blood collected in a heparinised tube
- Heparin prevents thrombin activation
- Platelets are activated by ADP

- Fibrin polymerisation (in absence of thrombin) is achieved by adding Activated Factor XIII and Reptilase
- MA of ADP channel is compared to a Heparinase-Kaolin cartridge
- % Inhibition is calculated
- > 30% inhibition is clinically meaningful

Platelet aggregation and inhibition

Platelet Mapping

- Heparin-induced thrombin inhibition = sensitive to antiplatelet agents
- Risk stratification for perioperative patients taking antiplatelets
- Can be used on Cardiopulmonary Bypass for heparinisation

TEG in transfusion algorithms

- Increasingly used
- Ideally developed locally in consultation with relevant stakeholders
- Mixed evidence for efficacy
 - Probably reduce total blood product usage
 - Reduce PRBC transfusion
 - May reduce mortality and ICU LOS
 - No clear evidence for reduced mortality
 - Studies are problematic and of limited quality

Mater Hospital Brisbane: General

TEG6S Interpretation & Action Guide for Critical Bleeding Patients

Collect blood in citrated tube/syringe - do not under or over fill the sample Perform TEG using global haemostasis cartridge and citrated blood

Test	Parameter	Ref range	Deficiency	Action	Dosing Guide
СК	Increased R	4.6 – 9.1 min	clotting factors*	FFP or Prothrombinex	FFP 2 units prothrombinex 25-50 units/kg
СКН	R < CK-R	4.3 – 8.3 min	heparin effect	protamine	1mg/100 units heparin (estimated effective heparin allowing for time since administered)
CFF	reduced MA	15 – 32 mm	fibrinogen	cryoprecipitate or fibrinogen concentrate	cryoprecipitate 1 unit/10kg (Issued as pooled or apheresis bags) fibrinogen concentrate 3gm stat or 25-50mg/kg when patient weighs <60kg Refer to fibrinogen concentrate guidelines below
CRT	reduced MA	52 – 70 mm	platelets**	platelets	platelets 1 dose
CRT	increased LY30	0-2.2%	fibrinolysis	tranexamic acid	Loading dose 1gm in 100mL over 10 minutes then infusion 1 gram in 100mL over 8 hours (12.5mL/hr)

* in presence of heparin (CK-R > CKH-R) refer to CKH-R for adequacy of clotting factors

** if CFF-MA normal

Repeat TEG 10 minutes post goal directed intervention

Monash

Monash**Health**

St Vincent's Cardiac

Conclusions and Summaries

- TEG/ROTEM is an incredibly powerful perioperative device
- It provides unique data regarding clot formation
- It complements traditional laboratory tests
- Modern tests are typically multichannel assays: use them together
- Don't be overwhelmed by all the data produced
 - R-time CK, MA CRT, MA CFF provide most information needed
- Like any monitoring device, its use needs to be supported with algorithms and practice change

Personal insights: setting up a programme

- Talk to other centres and use the expertise of the suppliers
- Introduce a device as part of a Patient Blood Management Programme
 - Demonstrate a clinical and economic benefit
- Get buy-in from haematology/transfusion, surgery, critical care early
- Build local algorithms or agree to adopt pre-existing ones
 - Builds rapport with your haematology colleagues
- Audit your practice over time

Thank you

Adam Eslick adameslick@gmail.com, adam.eslick@act.gov.au 0401863900